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Abstract. We propose an algorithm for periodic motion estimation and compensation in the case of a slowly rotating
gantry, e.g., as is the case in cone beam CT. The main target application is abdomen imaging, which is quite challenging
because of the absence of high-contrast features. The algorithm is based on minimizing a cost functional, which
consists of the data fidelity term, the optical flow constraint term, and regularization terms. To find the appropriate
solution we change the constraint strength and regularization strength parameters during the minimization. Results of
experiments with simulated and clinical data demonstrate promising performance.
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1 Introduction

Image reconstruction using on-board cone-beam computed tomography (CBCT) is an important
component of image-guided radiotherapy (IGRT) workflow. Due to the slow rotation of the gantry,
motion estimation and compensation become critically important. A number of algorithms for
solving this problem have been proposed (see e.g., Ref. 1–3 and references therein). Since the
slowly rotating gantry does not collect sufficient amount of time resolved projection data, most of
these algorithms work well only in regions of the patient that contain high-contrast features, e.g.,
the chest, and fail in relatively homogeneous regions. Imaging of the abdomen is especially chal-
lenging, since very few high-contrast features are present there. Iterative reconstruction algorithms
based on enforcing the optical flow constraint appear to be most powerful (see Ref. 4 for conver-
gence analysis) and can potentially provide clinically acceptable image quality in the abdomen. In
this paper, we propose one such algorithm and test it on simulated and clinical data. The novel
idea is that we change parameters of the cost functional in a dynamic fashion during optimization
to steer the algorithm towards a solution with required properties, e.g., with reduced sparse view
streaks. We performed tests on simulated and clinical data, but presented here only one clinical
example. Our tests demonstrated that the proposed algorithm provides good image quality, allows
to identify low-contrast features with accuracy sufficient for clinical applications.

2 Description of the algorithm

2.1 High level algorithm outline

Let s be the time variable. The dynamic object is represented by a function f(s, ~x) and periodic
deformation ~ψ(s, ~x) so that f(s, ~x) = f0(~ψ(s, ~x)) and ψ(s, ~x) = ψ(s + T, ~x). Here, f0(~x) is the
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attenuation coefficient at reference time, and T is the period of motion. The optical flow constraint
is given by

∂f(s, ~x)

∂s
+∇f(s, ~x) · ~v(s, ~x) = 0, (1)

where ~v(s, ~x) is the velocity vector at ~x at time s. Let sm, 0 ≤ m < M , be the collection of
times corresponding to the measured views, and Lmk, 0 ≤ k < K, be the collection of lines
corresponding to the mth source position. In other words, Lmk is the line through the mth source
position and the kth detector pixel. The measured data are denoted Gmk. To solve the motion
estimation and compensation problem, we find f(s, ~x) and ~v(s, ~x) by minimizing the following
functional:

Φ(f,~v) =
1

2

∑
mk

wmk

[
Gmk −

∫
Lmk

f(sm, ~x)d`

]2
+
λ

2

∫ ∫ T

0

[
∂f(s, ~x)

∂s
+∇f(s, ~x) · ~v(s, ~x)

]2
ds d~x+ (regularizers for f and ~v).

(2)

Here, λ > 0 needs to be large enough to enforce the optical flow constraint (1). We assume that the
dynamic object f is less smooth than the velocity ~v. Hence, we use an edge-preserving regularizer
for f (the hyperbolic potential), and the Tikhonov regularizer for ~v. We use a method of alternating
minimization to demonstrate the performance of the proposed algorithm.

2.2 Alternating minimization and dynamic parameter selection

Suppose the reconstruction volume and the motion grids are given by

~xi = (h1i1, h2i2, h3i3), i = (i1, i2, i3), for 0 ≤ iq < Nq, q = 1, 2, 3, (3)

~mj = (h̃1j1, h̃2j2, , h̃3j3), j = (j1, j2, j3), for 0 ≤ jq < Ñq, q = 1, 2, 3. (4)

For all ~x, we have f(s, ~x) ≈
∑

i fi(s)ϕh(~x−~xi), and ~v(s, ~x) ≈
∑

j ~vj(s)ϕ̃h(~x− ~mj), where ϕh and
ϕ̃h are interpolation kernels for volume and motion grids, respectively. To enforce smoothness of
the motion vector field (MVF), we select h̃q � hq and Ñq � Nq, and use the linear interpolation
kernel for the volume grid (ϕh), and the cubic B-spline kernel for the motion grid (ϕ̃h). Let there
be Np discrete phase bins. Let f and v denote phase volumes and MVFs unrolled into 1D vectors,
respectively. Then, we discretize (2) with respect to s and rewrite it in a matrix-vector form as
follows:

Φ(f ,v) = ΦL(f) + λΦfv(f ,v) + κfΦRf
(f) + κvΦRv(v), (5)

where ΦL(f) is the data fidelity functional (as used in the PWLS approach), Φfv(f ,v) is the optical
flow constraint, ΦRf

(f) is the volume regularizer, and ΦRv(v) is the velocity regularizer defined as:

ΦL(f) :=
1

2
(G−Af)TW(G−Af), Φfv(f ,v) :=

1

2

∥∥∥∥Df +
∑
q

diag
{
Bvq

}
Cqf

∥∥∥∥2
2

, (6)
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ΦRf
(f) :=

∑
q

∑
i

φR([Cqf ]i, δ), ΦRv(v) =:
1

2

∑
q

∑
r

∑
j

(
[Crvq]j

)2
. (7)

Here, G is the entire set of measured data, f is the entire set of phase volumes in vector form, v
is the entire set of phase MVFs in vector form, vq is the component of v along the qth axis, A is
the system matrix, W is the weight matrix, B is the upsampling matrix (from the motion grid (4)
to the volume grid (3)) based on cubic B-spline interpolation, D is the temporal finite difference
matrix along the phase bins with periodic boundaries, Cq is the spatial finite difference matrix
along the qth axis with clamped boundaries, diag{t} is the diagonal matrix with the elements of
vector t on the main diagonal,

[
t
]
i

is the ith element (scalar, vector, or matrix) along the first
dimension of vector or matrix t, φR(t, δ) is the hyperbolic potential regularizer. In general, W is
derived from the raw projection data to account for relative noise intensity. For now, we set W as
an identity matrix. Later, we are planning to use W to represent the phase-amplitude uncertainty.
The dimension of Cq is determined by the vector to which it applies.

2.3 Method of Alternating Minimization with respect to Volume and Velocity

The total cost functional in (5) is nonlinear, nonconvex, and ill-conditioned. Minimizing (5) with
respect to f and v simultaneously often falls into undesirable local minima. The method of alter-
nating minimization helps in this case by splitting the problem into two simpler sub-problems and
guiding the solution to the desired local minimum.

With the alternating minimization scheme, each global iteration consists of a set of volume
sub-iterations and a set of MVF sub-iterations. The cost functional is minimized with respect to
either f or v in an alternating fashion while keeping the other variable fixed. This way, each sub-
problem becomes convex, which is easier to solve. Starting volume sub-iterations with a large λ
when all phase MVFs are initialized as zero ends up underestimating the motion. In the extreme
case, when λ =∞, the reconstructed phase volumes are all the same at the end of the initial set of
volume sub-iterations. Once motion information is lost, it is hard to recover the accurate motion
in subsequent MVF sub-iterations. To appropriately utilize the optical flow constraint, we vary λ
during the course of optimization.

On the other hand, angular sampling for each temporal bin is very low, so strict phase gating
methods often create strong sparse view streaks that adversely affect MVF estimation. Hence we
start global iterations with a small value of λ to avoid MVF underestimation and strong volume
regularizer κf to reduce sparse view-sampling streaks. Then, we gradually ramp up λ, and simul-
taneously reduce κf to restore details. For example, we use the following values for λ and κf at
each global iteration step ng using parameters λmax, κmax, and κmin:

λ(ng) = min

(
λmax

ng + 0.5

Ng − 1
, λmax

)
, κf (ng) = max

(
κmax2

−ng , κmin

)
, (8)

where Ng is the total number of global iteration steps. While increasing λ during optimization is
a well-known approach that is used to convert a constrained problem into an unconstrained one,
the idea to reduce κf appears novel. In addition, the algorithm does not introduce any auxiliary
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Fig 1 Cross-sections through the reconstructed volume f(s, ~x) and MVF ~v(s, ~x) at the level of the kidneys for the
clinical data: transverse view (a)-(d) and coronal view (e)-(h). Time s corresponds to the middle of the exhale. The
red line in each volume slice shows the location of the opposite view. The unit of the velocity is pixels/∆phase, where
∆phase = respiratory cycle/10. Black arrows illustrate the direction of the major motion.

variables thereby reducing memory requirements (cf. Ref. 3, 4), and image registration becomes
an implicit part of the optimization (cf. Ref. 3).

A preconditioner and Nesterov’s momentum acceleration method Ref. 5 are applied to each
sub-iteration step to increase the convergence speed. No acceleration of global iterations is applied
due to the risk of overshooting and instability, since the overall functional is not convex.

3 Numerical Experiments

We present reconstruction results for a clinical dataset acquired using Varian TrueBeam R© scanner
with half-fan beam geometry. Chest motion amplitude was recorded using TrueBeam’s respiratory
gating system, and then converted to the breathing phase. Fig. 1 shows transverse and coronal
cross-sections through the reconstructed object f and the corresponding MVFs of a clinical case.
Additional reconstruction results from simulated and clinical data will be shown at the conference.

Results of numerical experiments show that ramping up λ and reducing κf during optimization
significantly reduces sparse-view streak artifact, reduces motion underestimation, and preserves
contrast resolution. As a result, low-contrast features that are normally very difficult to see in
CBCT images can now be resolved. Future work will concentrate on evaluating the proposed
algorithm using a large number of clinical data sets.
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