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Reduction of Artifacts in Multi-Energy Imaging for
a Stationary Gantry CT Scanner

Seongjin Yoon, Alexander Katsevich, Michael Frenkel, Ed Morton, and William Thompson

Abstract—Multi-Energy Stationary Gantry CT (ME-SGCT)
is a powerful tool for security screening. However, the SGCT
geometry leads to an anisotropic voxel illumination pattern,
which varies significantly across the field of view (FOV) and
results in irregular-view streaks. Multi-Energy CT (MECT)
exacerbates this artifact compared with single energy CT. In this
paper, we use MECT reconstruction based on the Photoelectric
(PE) and Compton Scattering (CS) decomposition. We propose
two algorithms to address the ME-SGCT streaks: (1) modified
bilateral filtering, which uses the more stable CS coefficient to
filter the less stable PE coefficient, and (2) data-filling based
on interpolation. We test the methods using simulated data for
complex phantoms. The results demonstrate significantly reduced
irregular-view streaks, which allows for more accurate estimation
of the effective atomic number Zeff and density ρ that are
important for security screening.

Index Terms—Multi-Energy CT imaging, Stationary Gantry
CT, image reconstruction, modified bilateral filter, nonuniform
view sampling, streak artifact reduction

I. INTRODUCTION

At present, carry-on baggage screening is done on the basis
of projection X-ray imaging, and the process relies heavily on
the operator performance. In an effort to improve screening,
there are several developments underway to use X-ray CT
for these purposes. To meet the processing time requirement
for the security check point, a stationary gantry CT (SGCT),
which uses a distributed source and stationary detector, has
been sought to provide the fastest possible scanning time.

While SGCT enables faster scanning, the design compli-
cates the development of analytic reconstruction algorithms:
(1) view-direction derivative cannot be used due to the X-
ray source not following a well-defined trajectory, and (2) the
illumination pattern of any voxel is highly anisotropic and
varies significantly across the field of view. To address those
issues, we previously developed a No View-Differentiation
(NVD) type algorithm that incorporates a weight function. The
latter is selected based on the illumination pattern to reduce
streaks that arise due to irregular view sampling [1].
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Fig. 1: Conceptual drawing of the SGCT scanner.

In an effort to improve threat detection even further, the
SGCT system can incorporate a photon-counting detector with
multiple energy bins to enable the scanner to capture spectral
information. The Photoelectric (PE) and Compton Scattering
(CS) decomposition method has been widely used as a foun-
dation of multi-energy CT (MECT) reconstruction [2], [3]. In
principle, PE-CS decomposition scheme can be directly used
for MECT reconstruction from the spectral data collected by
the SGCT scanner. However, the high dynamic range of the
PE coefficient combined with inherent irregular-view streak
artifacts of SGCT make it harder to use the reconstructed
images for computing the physical properties of the scanned
objects such as Zeff and ρ. While the previously proposed
weighted NVD reconstruction algorithm reduces irregular-
view streak artifacts significantly, the PE-CS decomposition
process can amplify the remaining streaks. The amplitude of
the streaks in the PE coefficient can even exceed the amplitude
of the original image, especially when metals are present in
the field of view (FOV).

Here, we propose two methods to reduce the streak artifact
in ME-SGCT: (1) modified bilateral filtering, which uses the
more stable (smaller dynamic range) CS coefficient to filter
the less stable (greater dynamic range) PE coefficient, and
(2) data-filling based on interpolation. We test the proposed
methods using simulated data. The tests show that the meth-
ods reduce the streaks significantly and enable one to more
accurately estimate Zeff and ρ pointwise in the FOV.

II. BASIS DECOMPOSITION

Basis decomposition models for MECT have been widely
used to simplify the reconstruction. The PE-CS decomposition
was developed by Alvarez and Macovski [2] based on two
major physical processes involved in photon attenuation at the
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range of medium energies (30-200 keV). The PE-CS model is
given by the equation

µ(E) = cpfPE(E) + csfKN(E), (1)

where E is the energy level, fPE = 1/Em, fKN is the Klein-
Nishina function, and cp and cs are the PE and CS coefficients,
respectively. The benefit of the PE-CS decomposition is that
there exist semi-empirical formulas relating ρ, Zeff with cp, cs:

cp = K1
Z

A
ρZn−1, cs = K2

Z

A
ρ. (2)

where K1, K2, and n need to be obtained empirically, as-
suming they are constant within the given energy range. The
ratio Z/A is assumed to be 1/2. For this work, we use the
parameters from Paziresh et al. [3]: K1 = 13.96, K2 = 0.30,
and n = 4.2.

Since the noise in photon counting data is known to be
Poisson distributed, we use Poisson likelihood to compute the
estimates of Cp and Cs, which are the line integrals of cp and
cs, respectively. The corresponding cost functional is given by:

[
Ĉp, Ĉs

]
= arg min

Cp,Cs

Nl∑

l=1

hl(ȳl(Cp, Cs)), (3)

where Nl is the number of detector energy bins. The Poisson
likelihood function hl and the estimated mean count ȳl are
defined as follows:

hl(t) = t− yl log t, (4)
ȳl(Cp, Cs) =
∫ El+1

El

Il(E) exp(−CpfPE(E)− CsfKN(E))dE, (5)

where Il is the energy spectrum within the l-th energy bin.
Once we get Ĉp and Ĉs from (3), we apply the view-density

weighted NVD algorithm described in our previous work [1],
to separately reconstruct cp and cs.

III. IMAGE DOMAIN SPARSE-VIEW/NOISE STREAK
REDUCTION FILTERING

Due to irregular view sampling, sparse-view streaks in ME-
SGCT reconstructions are distributed irregularly across the
FOV. Any conventional filter with localized support cannot ef-
fectively deal with such high amplitude irregularly distributed
artifacts. To suppress the artifact while keeping the algorithm
numerically simple and efficient, we introduce a modified
bilateral (MBL) filter guided by a reference image:

MBL[f(i)] =
∑

j∈Ω(i,nB)

exp

(−(g(i)− g(j))2

σmax(g)2 + δ

)
f(j), (6)

where f is the image being filtered, Ω(i,nB) is the set of
neighboring pixels in the square region centered at the i-th
pixel with size (2nB + 1) × (2nB + 1), and σ and δ are
tunable parameters. The latter also prevents dividing by zero.
The spatial weight of the filter is constant within the square
region. The Gaussian kernel is normalized by the maximum
value of the reference image for the following two reasons:
(1) to account for the dynamic range difference between cp

Fig. 2: Illustration of the image filtering workflow.

and cs, (2) the most significant sparse-view streak component
is proportional to the maximum value of each image. g is the
reference image which contains information about the same
object, but has a smaller dynamic range and less sparse-view
streaks. This approach belongs in a group of multi-channel
image denosing, see e.g. [4] and references therein.

To obtain the reference image g, we first filter the re-
constructed CS image cs using edge-preserving hyperbolic
potential (HP) regularization: cs → cHP

s . Since streak intensity
is much lower in cs than in cp, the localized HP filtering
can produce a good quality image cHP

s with most of the
streaks removed. Instead of using cHP

s directly for subsequent
processing, we use g = cHP

s as a reference image for MBL
filtering of cs to produce a new image cMBL

s , then we apply
the MBL filter to cp using the same cHP

s as the reference image.
For both cp and cs, we apply the MBL filter four times with

cHP
s as the reference image. See Fig. 2 for the diagram that

illustrates the proposed image filtering workflow. Here, fMBLn

represents the image f filtered by MBL n times. The reason
why we use cHP

s for MBL filtering of cp (even though cMBL4

s

is more accurate) is to have the same amount of blurring in
cMBL4

s and cMBL4

p . This leads to more accurate pointwise ratios
cp/cs ≈ cMBL4

p /cMBL4

s when computing Zeff .
While the MBL filter effectively removes high amplitude

streaks, it comes with one caveat. For accurate reconstruction
of a region with constant Zeff and density, the size of the
region should be large enough to contain sufficiently many
streaks. In this case the streaks are reduced due to averaging.
For voxels farther away from a high-Z material that generates
streaks, it gets harder to remove sparse-view streaks because
the frequency of the streaks is decreasing. To address this
issue, we fill in some of the missing data by interpolating
available data. This procedure is explained in the next section.

IV. DATA FILLING USING INTERPOLATION

Adding to the MBL filtering described in Sec. III, we create
synthetic data by interpolating two projection data with the
same source-detector position (but the object is shifted) during
the back-projection stage to reduce the streak artifact further.

Due to the rectangular geometry of the detector, we first
project the data onto a virtual flat detector to use the conven-
tional FDK-type backprojection. This backprojection process
combines the horizontal axis (along the detector rows) of the
virtual detector and the vertical axis (along the columns) of
the actual detector to parametrize the data to be backprojected.
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Fig. 3: Illustration of the vertical cross section of the areas
illuminated by two vertically-shifted source positions. Image
pixels lying on the same dotted line share the same z∗ value.
Red region shows where the projection data is originally avail-
able, and green region shows where the synthetic projection
data is filled by interpolation.

For illustration purposes, let us assume that the object is
stationary, and the source-detector gantry is shifting vertically.
Since we interpolate two (filtered) cone beam projections with
the vertically-shifted source-detector positions, the horizontal
coordinate of the interpolated data is still the same in both
cases. Only the vertical coordinate of one illuminated region
is shifted relative to the other. The illuminated regions for the
two projections do not overlap, and there is a gap between
the two illuminated regions where the projection data are not
available. Fig. 3 shows the schematic vertical cross section of
the two illuminated regions and the gap between them.

Two data points (z0 and z1 in Fig. 3) to be used for
interpolation do not share the same mapping onto the detector
vertical coordinate, as the mapping depends on the vertical
source positions. Thus, the interpolated projection data does
not belong to any of those two mapping systems. To solve this
issue, we define a set of virtual source positions between the
two actual source locations, that enables the projected vertical
coordinate of the data point to always be between the top of
the bottom projection data region and the bottom of the top
projection data region. Additionally, to avoid estimating values
too far from the available data, we apply interpolation only to
image pixels if their projected vertical coordinate is within a
threshold distance of ze from either the top source position or
the bottom source position (see the green regions in Fig. 3).
Consequently, the following value is used in the interpolation
algorithm to identify the location of the interpolated data point:

z∗ =
z0t

nI
1 + z1t

nI
0

tnI
0 + tnI

1

,

z0 < z∗ ≤ z0 + ze or z1 − ze ≤ z∗ < z1. (7)

where t0 is the vertical distance between the reference data
point z0 and the shadow of the image point with the corre-

sponding source position, t1 is the equivalent of t0 with the
reference data point being z1.

Boundary detector pixels are more vulnerable to high am-
plitude noise as they have fewer neighboring pixels that can be
used for denoising. Nearest neighbor interpolation makes the
image more crisp, but it can create discontinuity and amplify
noise. Linear interpolation attenuates noise, but it reduces
spatial resolution. The factor nI > 0 provides the flexibility to
transform the interpolator from linear to nearest neighbor, i.e.,
linear interpolation if nI = 1, and nearest neighbor if nI � 1.

V. NUMERICAL EXPERIMENTS

We simulate noise-free sinogram data for a 3D phantom
consisting of water, aluminum, and titanium ellipsoids (see
Fig. 4), with poly-energetic sources fired in a periodic quasi-
random sequence.

Fig. 5 shows the estimated cofficients cp and cs without
any streak artifact removal applied. Note that the cs image has
significantly fewer streaks than the cp image. Fig. 6 shows the
corresponding coefficients after data-filling and MBL filter are
applied. Without artifact correction, the intensity of streaks in
the cp image is much greater than the value of cp for water,
thus making the estimation of ρ and Zeff almost impossible.
The proposed streak removal workflow enables one to estimate
ρ and Zeff based on (2). Figs. 7 and 8 show the profiles of
ρ and Zeff in four different locations marked by colored lines
in Fig. 4. While the estimated ρ deviates from the ground
truth, the estimated Zeff matches well with the ground truth.
The error in the density estimation is mostly caused by two
factors: (1) cone-beam error of the FDK-type reconstruction,
(2) approximation error of Z/A = 0.5. Fortunately, estimation
of the effective atomic number is less vulnerable to those two
errors because they affect both the cp and cs equally. Dividing
cp by cs compensates the error. Also, the error in density due
to the Z/A approximation is systematic and should not affect
material identification since this can be calibrated.

VI. CONCLUSIONS

We develop a workflow for robust MECT image reconstruc-
tion for a stationary gantry scanner. The presented numerical
experiments demonstrate that the proposed algorithms allow
one to efficiently reduce streak artifacts while preserving the
accuracy of ME-SGCT reconstruction.
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Fig. 4: Ground truth phantom data, density ρ (left) and effective atomic number
Zeff (right). Lines indicate the locations of profiles shown in Figs. 7 and 8.

Fig. 5: Estimated cp (left) and cs (right), without data-filling or MBL filtering.

Fig. 6: Estimated cp (left) and cs (right), after data-filling and MBL filtering.

Fig. 7: Profiles of estimated density after data-filling and MBL filtering. Locations
of the sampled profiles are shown in Fig. 4.

Fig. 8: Profiles of estimated effective atomic number after data-filling and MBL
filtering. Locations of the sampled profiles are shown in Fig. 4.
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